Issue 56, 2016

Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams

Abstract

In this work, for the first time, we report the successful synthesis of three-dimensionally interconnected porous boron nitride foams (BNFs) with a high degree of crystallinity using porous sacrificial polymeric hard templates. Ammonia borane/CTAB solution were infiltrated inside highly porous preforms of poly(styrene-co-divinylbenzene) (PS), poly(acrylonitrile-co-divinylbenzene) (PAN) and poly(ethylhexyl acrylate-co-divinylbenzene) (PEHA) made using a high internal phase emulsion process. These were later subjected to pyrolysis under an ammonia atmosphere at the rather low temperature of 1150 °C for 90 minutes. The obtained products were characterized using X-ray diffraction, Fourier transformed infrared spectroscopy, N2 sorption analysis, scanning electron microscopy, scanning transmission electron microscopy and high resolution transmission electron microscopy (HR-TEM). The synthesized BNFs closely replicated and retained the open-cellular interconnected microstructure of the polymeric templates. The HR-TEM results revealed the formation of highly crystalline BN stack layers in small domains. The prepared BNF using the PS template showed superhydrophobic behavior which was typical for all of the prepared samples, with a water contact angle of ∼144° and a high adsorption capacity of 1800% for used engine oil.

Graphical abstract: Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2016
Accepted
13 May 2016
First published
19 May 2016

RSC Adv., 2016,6, 51426-51434

Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams

M. Maleki, M. Shokouhimehr, H. Karimian and A. Beitollahi, RSC Adv., 2016, 6, 51426 DOI: 10.1039/C6RA07751J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements