Issue 43, 2016

In vitro/in vivo study of novel anti-cancer, biodegradable cross-linked tannic acid for fabrication of 5-fluorouracil-targeting drug delivery nano-device based on a molecular imprinted polymer

Abstract

Using biodegradable material in medicinal applications is known as an important factor. On the other hand, the delivery of drugs directly to the target site is a promising field of research especially for anti-cancer drug delivery systems. The present research aimed to evaluate an effective anti-cancer device for treatment of tumors. In this respect, a novel fluorescent multi core–shell structure of magnetic molecular imprinted polymer nanoparticles based on biodegradable materials was designed as a carrier for targeted, sustained and controlled release of 5-fluorouracil (5-FU). Herein, tannic acid as a biodegradable polyphenol with potential anti-cancer performance was used to fabricate a cross-linker agent. Then, a mini-emulsion polymerization technique was performed in the presence of magnetic fluorescent cores for preparing the carrier. The structure of samples was fully characterized using various kinds of analyses. Afterwards, the performance of the product as an anti-cancer carrier was examined through different in vivo and in vitro analyses including small animal body imaging, the MTT viability assay and high performance liquid chromatography (HPLC). The biodegradable structure of samples was also investigated in various environments similar to the human body. Furthermore, in vitro analyses on Michigan Cancer Foundation-7 (MCF-7) cells provided evidence for the multiple anti-cancer performances of the carrier. Based on the obtained results, this novel drug carrier with outstanding properties can perform an effective and obvious roll in the cancer-therapy field.

Graphical abstract: In vitro/in vivo study of novel anti-cancer, biodegradable cross-linked tannic acid for fabrication of 5-fluorouracil-targeting drug delivery nano-device based on a molecular imprinted polymer

Article information

Article type
Paper
Submitted
09 Feb 2016
Accepted
01 Apr 2016
First published
08 Apr 2016

RSC Adv., 2016,6, 37308-37318

In vitro/in vivo study of novel anti-cancer, biodegradable cross-linked tannic acid for fabrication of 5-fluorouracil-targeting drug delivery nano-device based on a molecular imprinted polymer

E. Asadi, M. Abdouss, R. M. Leblanc, N. Ezzati, J. N. Wilson and S. Azodi-Deilami, RSC Adv., 2016, 6, 37308 DOI: 10.1039/C6RA03704F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements