Issue 40, 2016

Tuning the high-temperature properties of Pr2NiO4+δ by simultaneous Pr- and Ni-cation replacement

Abstract

Novel Pr2−xSrxNi1−xCoxOδ (x = 0.25; 0.5; 0.75) oxides with the tetragonal K2NiF4-type structure have been prepared. Room-temperature neutron powder diffraction (NPD) study of x = 0.25 and 0.75 phases together with iodometric titration results have shown the formation of hyperstoichiometric oxide for x = 0.25 (δ = 0.09(2)) and a stoichiometric one for x = 0.75. High-temperature X-ray powder diffraction (HT XRPD) showed substantial anisotropy of the thermal expansion coefficient (TEC) along the a- and c-axis of the crystal structure, which increases with increasing the Co content from TEC(c)/TEC(a) = 2.4 (x = 0.25) to 4.3 (x = 0.75). High-temperature NPD (HT NPD) study of the x = 0.75 sample reveals that a very high expansion of the axial (Ni/Co)–O bonds (75.7 ppm K−1 in comparison with 9.1 ppm K−1 for equatorial ones) is responsible for such behaviour, and is caused by a temperature-induced transition between low- and high-spin states of Co3+. This scenario has been confirmed by high-temperature magnetization measurements on a series of Pr2−xSrxNi1−xCoxOδ samples. For compositions with high Ni content (x = 0.25 and 0.5) we synthesised K2NiF4-type oxides Pr2−xySrx+y(Ni1−xCox)Oδ, y = 0.0–0.75 (x = 0.25); y = 0.0–0.5 (x = 0.5). The studies of the TEC, high-temperature electrical conductivity in air, chemical stability of the prepared compounds in oxygen and toward interaction with Ce2−xGdxO2−x/2 (GDC) at high temperatures reveal optimal behaviour of Pr1.35Sr0.65Ni0.75Co0.25O4+δ. This compound shows stability in oxygen at 900 °C and does not react with GDC at least up to 1200 °C. It features low TEC of 13 ppm K−1 and high-temperature electrical conductivity in air of 280 S cm−1 at 900 °C, thus representing a promising composition for use as a cathode material in intermediate temperature solid oxide fuel cells (IT-SOFC).

Graphical abstract: Tuning the high-temperature properties of Pr2NiO4+δ by simultaneous Pr- and Ni-cation replacement

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2016
Accepted
25 Mar 2016
First published
30 Mar 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 33951-33958

Tuning the high-temperature properties of Pr2NiO4+δ by simultaneous Pr- and Ni-cation replacement

S. Ya. Istomin, O. M. Karakulina, M. G. Rozova, S. M. Kazakov, A. A. Gippius, E. V. Antipov, I. A. Bobrikov, A. M. Balagurov, A. A. Tsirlin, A. Michau, J. J. Biendicho and G. Svensson, RSC Adv., 2016, 6, 33951 DOI: 10.1039/C6RA03099H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements