Issue 21, 2016

Bio-inspired Janus composite nanoscrolls for on-demand tumour targeting

Abstract

Inspired by the responsive characteristics of natural fibrous counterparts, triple stimuli, pH-, drug-, and near-infrared (NIR) light-responsive Janus composite nanosheets (JCNs) were investigated. The nanosheets consisted of gold islands sequentially hetero-grafted with three different biocompatible polymers (gum arabic, chitosan, and poly(ε-caprolactone)-b-polyethylene glycol (PEG-b-PCL)) that are hierarchically synthesized by a physical deposition–surface functionalization–chemical exfoliation processes. The JCNs are elastic and go through pH-controlled shape recovery activity in a reversible manner. Remarkably, by anchoring the heat-sensitive PEG-b-PCL on the chitosan side of JCNs, the JCNs are securely self-scrolled when doxorubicin molecules are loaded; and unscrolled to release the drug under remotely controlled NIR-irradiation, with negligible premature release, which mimics the structural behavior of a spore launcher in ferns. Moreover, the scrolled JCNs show exceptional photothermal stability under NIR-laser irradiation and the optical hyperthermal effect is capable of inducing death of tumor cells, as well as bright fluorescence and a targeted photothermal anti-tumor effect under two-photon fluorescence imaging. This enables complex nano-therapeutic drug vehicle development in potential cancer theranosis with low toxic side-effects.

Graphical abstract: Bio-inspired Janus composite nanoscrolls for on-demand tumour targeting

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2015
Accepted
22 Jan 2016
First published
26 Jan 2016

RSC Adv., 2016,6, 17179-17187

Bio-inspired Janus composite nanoscrolls for on-demand tumour targeting

J. Kim and T. Lu, RSC Adv., 2016, 6, 17179 DOI: 10.1039/C5RA27080D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements