Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 12, 2016
Previous Article Next Article

Facile surface engineering of CuInS2/ZnS quantum dots for LED down-converters

Author affiliations

Abstract

We present a facile one-pot synthesis and simple surface modification strategies to prepare ternary CuInS2/ZnS quantum dots (CIS/ZnS QDs) functionalized with alkyl-, carboxyl- and hydroxyl-terminated ligands. Photoluminescence quantum yields (PLQY) up to 60% can be achieved for CIS/ZnS QDs synthesized on a gram scale. Aqueous mercaptopropionic acid (MPA) capped QDs are used as a base for further surface modification. On the one hand ligand–solvent interactions have been found to play a major role in the luminescence quenching mechanism of aqueous CIS/ZnS QDs. On the other hand, solvent extraction, immobilization in a polymer matrix or phase transfer greatly enhances the photoluminescence. Quantum yields in solution and in solid matrices differ greatly in the case of aqueous QDs both in polymers and in sol–gel silica. Surface engineered QDs are assessed for their usefulness in LED down-conversion experiments. We demonstrate that down-converter layer properties are not only dependent on the QD type and PLQY, but also on the matrix and the type of ligand shell. Despite significant (up to a factor of two) differences in PLQY between the hydrophobic and hydrophilic dots, their LED conversion efficiencies are comparable and up to 49% and 46% for hydrophobic and for hydrophilic QDs, respectively. Additionally, sol–gel nanocomposites incorporating CuInS2/ZnS QDs with OH-terminated ligands that can withstand 200 h high power blue LED irradiation are presented for the first time.

Graphical abstract: Facile surface engineering of CuInS2/ZnS quantum dots for LED down-converters

Back to tab navigation

Supplementary files

Article information


Submitted
09 Dec 2015
Accepted
16 Jan 2016
First published
20 Jan 2016

RSC Adv., 2016,6, 10086-10093
Article type
Paper

Facile surface engineering of CuInS2/ZnS quantum dots for LED down-converters

K. Gugula, L. Stegemann, P. J. Cywiński, C. A. Strassert and M. Bredol, RSC Adv., 2016, 6, 10086
DOI: 10.1039/C5RA26331J

Social activity

Search articles by author

Spotlight

Advertisements