Oxide vacancies enhanced visible active photocatalytic W19O55 NMRs via strong adsorption
Abstract
W19O55 nano-/micron-rods (NMRs) were synthesized through calcining WO3 powders under a reducing atmosphere with S vapor in a vacuum furnace. For comparison, the as-prepared W19O55 NMRs were then annealed at 500 °C for 2 h to obtain WO3 NMRs. The decolourization of organic dyes methylene blue and rhodamine B under visible light by the two kinds of NMRs reveals that the oxygen-deficient W19O55 sample will present better comprehensive performance due to its stronger surface adsorption to the dye molecules, which could be attributed to the oxygen vacancies.
Please wait while we load your content...