Issue 4, 2016

Determination of hypochlorite by quenching the fluorescence of 1-pyrenylboronic acid in tap water

Abstract

In neutral conditions, hypochlorite-assisted oxidative conversion of 1-pyrenylboronic acid into 1-hydroxypyrene, which leads to 1-pyrenylboronic acid fluorescence quenching, was used as the signaling tool. Compared with 1-pyrenylboronic acid, the maximum excitation (λex = 347 nm) and emission (λem = 392 nm) wavelength of 1-hydroxypyrene had no obvious change. The surfactant Triton X-100, as a micellar additive, was not only used to enhance the stability of the fluorescence probe, but also to improve its sensitivity. When using Triton X-100, the signaling of 1-pyrenylboronic acid was markedly enhanced. Herein, a spectrofluorimetric method for highly selective and sensitive hypochlorite determination has been performed. It can be noted that the fluorescence intensities positively correlated with the hypochlorite concentration over the range of 0.69–6.0 μmol L−1. The detection limit was 0.21 μmol L−1, which is lower than for most of the recently published methods. The experimental conditions were optimized and the effects of coexisting substances are evaluated. The results showed excellent priority because a certain amount of ions, including SO32−, NH4+, Cu2+ and other acid radicals, would not interfere with the measurement. The accuracy and reliability of the method was further ensured by recovery studies using the standard-addition method. In addition, the quenching mechanism, which was proven to be static quenching, has been investigated systematically by the linear plots at varying temperatures based on the Stern–Volmer equation, fluorescence lifetime, and UV-visible absorbance spectra. This method was finally used to detect hypochlorite in local water samples.

Graphical abstract: Determination of hypochlorite by quenching the fluorescence of 1-pyrenylboronic acid in tap water

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2015
Accepted
16 Dec 2015
First published
21 Dec 2015

RSC Adv., 2016,6, 3393-3398

Determination of hypochlorite by quenching the fluorescence of 1-pyrenylboronic acid in tap water

Y. Yuan, X. Huang, S. Liu, J. Yang, R. Duan and X. Hu, RSC Adv., 2016, 6, 3393 DOI: 10.1039/C5RA23367D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements