Issue 4, 2016

Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal–organic framework hybrid

Abstract

High curing temperature and large brittleness are two bottlenecks that prevent the sustainable development of thermally resistant thermosetting resins. However, simultaneously overcoming the bottlenecks without sacrificing the thermal stability is still a great challenge. Herein, a novel multifunctional hybrid (GO/MnMOF) comprised of graphene oxide (GO) and a manganese based metal–organic framework (MnMOF) was fabricated and characterized. Then, the GO/MnMOF hybrid was used to prepare a new type of toughened cyanate ester (CE) resin with significantly reduced curing temperature, low dielectric loss and high thermal resistance. In particular, the addition of only 0.5 wt% of GO/MnMOF can reduce the postcuring temperature of CE from 240 °C to 220 °C and the curing temperature continuously decreased as the content of GO/MnMOF increased. Besides, the integrated performance of the modified resin containing 0.5 wt% GO/MnMOF (0.5GO/MnMOF/CE) was much better than those of original CE resin, including its thermal, mechanical and dielectric properties; this allows progress on solving the two bottlenecks of thermally resistant thermosetting resins. It should be noted that the role of GO/MnMOF on improving the catalysis and performance of CE resin was not due to a simple combination of GO and MnMOF, but a significant synergistic effect. The attractive performance of GO/MnMOF/CE demonstrates that GO/MnMOF is an efficient multifunctional modifier, and the mechanism revealed herein provides a new strategy to develop high performance CE resins with significantly improved comprehensive properties through controlling the structure of the crosslinked network.

Graphical abstract: Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal–organic framework hybrid

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2015
Accepted
15 Dec 2015
First published
17 Dec 2015

RSC Adv., 2016,6, 3290-3300

Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal–organic framework hybrid

H. Wang, L. Yuan, G. Liang and A. Gu, RSC Adv., 2016, 6, 3290 DOI: 10.1039/C5RA21765B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements