Issue 1, 2016

Theoretical and experimental investigation of the polyeletrophilic β-enamino diketone: straightforward and highly regioselective synthesis of 1,4,5-trisubstituted pyrazoles and pyrazolo[3,4-d]pyridazinones

Abstract

Obtaining a new precursor enamino diketone with five electrophilic centers is reported, along with theoretical and experimental studies of its reactivity against mono- or dinucleophiles. The Fukui function showed that the β-carbon is the most electrophilic center, followed by the carbonyl ketone and the carbonyl ester, respectively. The reaction of enamino diketone with aniline and hydrazines allowed for the synthesis of a new enamino diketone and 1,4-disubstituted pyrazoles-5-carboxylates, respectively. The regiochemistry and mechanism of syntheses of 1,4-disubstituted pyrazoles-5-carboxylates were determined from reaction monitoring by ESI-MS, NMR analysis and crystallographic data, and fully agreed with the theoretical results. The versatility and efficiency of the enamino diketone was demonstrated by the reaction with hydrazines furnishing multi-functionalized pyrazoles and pyrazolo[3,4-d]pyridazinone derivatives with high regioselectivity.

Graphical abstract: Theoretical and experimental investigation of the polyeletrophilic β-enamino diketone: straightforward and highly regioselective synthesis of 1,4,5-trisubstituted pyrazoles and pyrazolo[3,4-d]pyridazinones

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2015
Accepted
11 Dec 2015
First published
22 Dec 2015

RSC Adv., 2016,6, 290-302

Theoretical and experimental investigation of the polyeletrophilic β-enamino diketone: straightforward and highly regioselective synthesis of 1,4,5-trisubstituted pyrazoles and pyrazolo[3,4-d]pyridazinones

M. J. V. da Silva, R. G. M. Silva, U. Z. Melo, D. S. Gonçalves, D. F. Back, S. Moura, R. M. Pontes, E. A. Basso, G. F. Gauze and F. A. Rosa, RSC Adv., 2016, 6, 290 DOI: 10.1039/C5RA12968K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements