Issue 43, 2016

Visible and sunlight driven RAFT photopolymerization accelerated by amines: kinetics and mechanism

Abstract

Recently, photochemical polymerizations have received interest since they can be performed under mild conditions and they offer temporal control over the reaction. In this study, the kinetics of photochemical dithiobenzoate-mediated RAFT polymerization in the presence of triethylamine is explored. This system uses mild light sources such as visible light and sunlight, and does not require the use of expensive or rare earth catalysts. Instead triethylamine is combined with reagents used in RAFT polymerization. This study investigates the effects of light source, RAFT chain transfer agent concentration, and amine concentration, to understand the kinetic contributions of each component and possible mechanism of this process. Data suggests that there is electron transfer from the amine to the excited RAFT end-group, which is the major radical generation pathway. Radicals are also generated directly from the excited RAFT end-group. This method yields living polymers as evidenced by the synthesis of well-defined block copolymers.

Graphical abstract: Visible and sunlight driven RAFT photopolymerization accelerated by amines: kinetics and mechanism

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2016
Accepted
07 Oct 2016
First published
07 Oct 2016

Polym. Chem., 2016,7, 6626-6636

Visible and sunlight driven RAFT photopolymerization accelerated by amines: kinetics and mechanism

M. L. Allegrezza, Z. M. DeMartini, A. J. Kloster, Z. A. Digby and D. Konkolewicz, Polym. Chem., 2016, 7, 6626 DOI: 10.1039/C6PY01433J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements