Issue 21, 2016

Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells

Abstract

The acquisition of resistance to chemotherapy is a major hurdle for successful cancer therapy. Herein, a new light-responsive drug delivery nanoparticle system is developed to overcome doxorubicin (DOX) resistance in breast cancer cells. The nanoparticles with high drug loading capacity are self-assembled from an amphiphilic polymer which is composed of a hydrophobic photosensitizer (PS) with aggregation-induced emission (AIE) characteristics and a biocompatible and hydrophilic poly(ethylene glycol) (PEG) conjugated via a reactive oxygen species (ROS) cleavable thioketal (TK) linker. The AIE PS makes the nanoparticles visible for high-quality imaging and capable of generating ROS upon light irradiation. When exposed to white light irradiation, the ROS generated from the PS could not only induce the endo-lysosomal membrane rupture, but also break the nanoparticles. This results in facilitated endo-lysosomal escape and triggered cytosol release of DOX, which can significantly improve intracellular DOX accumulation and retention in drug resistant MDA-MB-231 breast cancer cells. With light irradiation, the drug loaded nanoparticles can significantly inhibit the growth of DOX-resistant MDA-MB-231 cells. These results reveal that AIEgen based nanoparticles offer a potentially effective approach to overcome drug resistance in cancer cells.

Graphical abstract: Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2016
Accepted
19 Apr 2016
First published
20 Apr 2016

Polym. Chem., 2016,7, 3530-3539

Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells

Y. Yuan, S. Xu, C. Zhang and B. Liu, Polym. Chem., 2016, 7, 3530 DOI: 10.1039/C6PY00449K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements