Issue 8, 2016

Photo-induced electron transfer in a diamino-substituted Ru(bpy)3[PF6]2 complex and its application as a triplet photosensitizer for nitric oxide (NO)-activated triplet–triplet annihilation upconversion

Abstract

A system demonstrating Nitric Oxide (NO) activated Triplet–Triplet Annihilation (TTA) upconversion has been devised, based on a substituted [RuII(bpy)3](PF6)2 complex (bpy = 2,2′-dipyridine) bearing a single 1,2-diaminophenyl moiety as an NO activatable triplet photosensitizer (Ru-1), and 9,10-diphenylanthracene (DPA) as a triplet acceptor/emitter. The excited triplet state of Ru-1 is significantly quenched (ΦT ∼ 22%) by a Photoinduced Electron Transfer (PET) reaction, as confirmed by steady state phosphorescence and transient absorption spectroscopy, and hence Ru-1 does not function as a TTA upconversion sensitizer. However, in the presence of NO/O2, the 1,2-diaminophenyl group of Ru-1 is transformed into a benzotriazole. This inhibits PET, and the triplet state quantum yield is increased to ca. 85%, switching on the TTA upconversion process which increases by 10-fold. These processes were studied using a combination of steady state and time-resolved luminescence together with transient absorption spectroscopy on the nanosecond and femtosecond timescales. The energy level of the charge transfer state (CTS) for Ru-1 was also obtained electrochemically, supporting the PET mechanism of triplet state quenching and hence the lack of TTA upconversion with Ru-1.

Graphical abstract: Photo-induced electron transfer in a diamino-substituted Ru(bpy)3[PF6]2 complex and its application as a triplet photosensitizer for nitric oxide (NO)-activated triplet–triplet annihilation upconversion

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2016
Accepted
21 Jun 2016
First published
22 Jun 2016

Photochem. Photobiol. Sci., 2016,15, 995-1005

Photo-induced electron transfer in a diamino-substituted Ru(bpy)3[PF6]2 complex and its application as a triplet photosensitizer for nitric oxide (NO)-activated triplet–triplet annihilation upconversion

K. Xu, J. Zhao and E. G. Moore, Photochem. Photobiol. Sci., 2016, 15, 995 DOI: 10.1039/C6PP00153J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements