Issue 3, 2016

Synthesis of characteristic Mycobacterium peptidoglycan (PGN) fragments utilizing with chemoenzymatic preparation of meso-diaminopimelic acid (DAP), and their modulation of innate immune responses

Abstract

Peptidoglycan (PGN) is a major component of bacterial cell wall and is recognized as a potent immunostimulant. The PGN in the cell envelope of Mycobacterium Tuberculosis has been shown to possess several unique characteristics including the presence of N-glycolyl groups (in addition to N-acetyl groups) in the muramic acid residues, and amidation of the free carboxylic acid of D-Glu or of meso-DAP in the peptide chains. Using a newly developed, highly stereoselective, chemoenzymatic approach for the synthesis of meso-DAP in peptide stems, we successfully synthesized for the first time, a series of Mycobacterium PGN fragments that include both mono- and disaccharides of MurNGlyc or 1,6-anhydro-MurNGlyc, as well as peptide-amidated variants. The ability of these PGN fragments to stimulate the immune system through activation of human Nod1 and Nod2 was examined. The PGN fragments were found to modulate immune stimulation, specifically, amidation at the D-Glu and meso-DAP in the peptide stem strongly reduced hNod1 activation. This effect was dependent on modification position. Additionally, N-glycolyl (instead of acetyl) of muramic acid was associated with slightly reduced human Nod1 and Nod2 stimulatory capabilities.

Graphical abstract: Synthesis of characteristic Mycobacterium peptidoglycan (PGN) fragments utilizing with chemoenzymatic preparation of meso-diaminopimelic acid (DAP), and their modulation of innate immune responses

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2015
Accepted
24 Nov 2015
First published
24 Nov 2015

Org. Biomol. Chem., 2016,14, 1013-1023

Author version available

Synthesis of characteristic Mycobacterium peptidoglycan (PGN) fragments utilizing with chemoenzymatic preparation of meso-diaminopimelic acid (DAP), and their modulation of innate immune responses

Q. Wang, Y. Matsuo, A. R. Pradipta, N. Inohara, Y. Fujimoto and K. Fukase, Org. Biomol. Chem., 2016, 14, 1013 DOI: 10.1039/C5OB02145F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements