Jump to main content
Jump to site search

Issue 36, 2016
Previous Article Next Article

Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap

Author affiliations

Abstract

We present a new technique for the study of model membranes on the length-scale of a single nano-sized liposome. Silver decahedral nanoparticles have been encapsulated by a model unilamellar lipid bilayer creating nano-sized lipid vesicles. The metal core has two roles (i) increasing the polarizability of vesicles, enabling a single vesicle to be isolated and confined in an optical trap, and (ii) enhancing Raman scattering from the bilayer, via the high surface-plasmon field at the sharp vertices of the decahedral particles. Combined this has allowed us to measure a Raman fingerprint from a single vesicle of 50 nm-diameter, containing just ∼104 lipid molecules in a bilayer membrane over a surface area of <0.01 μm2, equivalent to a volume of approximately 1 zepto-litre. Raman scattering is a weak and inefficient process and previous studies have required either a substantially larger bilayer area in order to obtain a detectable signal, or the tagging of lipid molecules with a chromophore to provide an indirect probe of the bilayer. Our approach is fully label-free and bio-compatible and, in the future, it will enable much more localized studies of the heterogeneous structure of lipid bilayers and of membrane-bound components than is currently possible.

Graphical abstract: Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap

Back to tab navigation

Article information


Submitted
15 Jul 2016
Accepted
30 Aug 2016
First published
02 Sep 2016

This article is Open Access

Nanoscale, 2016,8, 16395-16404
Article type
Paper

Surface-enhanced Raman scattering measurement from a lipid bilayer encapsulating a single decahedral nanoparticle mediated by an optical trap

A. J. Wright, J. L. Richens, J. P. Bramble, N. Cathcart, V. Kitaev, P. O'Shea and A. J. Hudson, Nanoscale, 2016, 8, 16395
DOI: 10.1039/C6NR05616D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements