Issue 41, 2016

Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation

Abstract

The advantage of metasurfaces and nanostructures with a high nonlinear response is that they do not require phase matching, and the generated pulses are short in the time domain without additional pulse compression. However, the fabrication of large-scale planar structures by lithography-based methods is expensive, time consuming, and requires complicated preliminary simulations to obtain the most optimized geometry. Here, we propose a novel strategy for the self-assembled fabrication of large-scale resonant metasurfaces, where incident femtosecond laser pulses adjust the initial silicon films via specific surface deformation to be as resonant as possible for a given wavelength. The self-adjusting approach eliminates the necessity of multistep lithography and designing, because interference between the incident and the scattered parts of each laser pulse “imprints” resonant field distribution within the film. The self-adjusted metasurfaces demonstrate a high damage threshold (≈1012 W cm−2) and efficient frequency conversion from near-IR to deep UV. The conversion efficiency is up to 30-fold higher compared with nonresonant smooth Si films. The resulting metasurfaces allow for the generation of UV femtosecond laser pulses at a wavelength of 270 nm with a high peak and average power (≈105 W and ≈1.5 μW, respectively). The results pave the way to the creation of ultrathin nonlinear metadevices working at high laser intensities for efficient deep UV generation at the nanoscale.

Graphical abstract: Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2016
Accepted
09 Sep 2016
First published
14 Sep 2016

Nanoscale, 2016,8, 17809-17814

Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation

S. V. Makarov, A. N. Tsypkin, T. A. Voytova, V. A. Milichko, I. S. Mukhin, A. V. Yulin, S. E. Putilin, M. A. Baranov, A. E. Krasnok, I. A. Morozov and P. A. Belov, Nanoscale, 2016, 8, 17809 DOI: 10.1039/C6NR04860A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements