Issue 22, 2016

Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

Abstract

Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ∼6 nm) having lower adhesion energies than smaller NPs (e.g. ∼1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.

Graphical abstract: Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2016
Accepted
03 May 2016
First published
04 May 2016

Nanoscale, 2016,8, 11635-11641

Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

M. Ahmadi, F. Behafarid and B. R. Cuenya, Nanoscale, 2016, 8, 11635 DOI: 10.1039/C6NR02166B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements