Issue 20, 2016

Complete Au@ZnO core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

Abstract

Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core–shell NPs at room temperature. The resulting Au@ZnO core–shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core–shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core–shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.

Graphical abstract: Complete Au@ZnO core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2016
Accepted
23 Mar 2016
First published
23 Mar 2016

Nanoscale, 2016,8, 10774-10782

Complete Au@ZnO core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

Y. Sun, Y. Sun, T. Zhang, G. Chen, F. Zhang, D. Liu, W. Cai, Y. Li, X. Yang and C. Li, Nanoscale, 2016, 8, 10774 DOI: 10.1039/C6NR00933F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements