Issue 6, 2016

Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer

Abstract

In this study, we present a two-terminal perovskite (PVSK)-organic hybrid tandem solar cell with a nanostructured PVSK as the light window and a PFN/doped MoO3/MoO3 structure as the interconnecting layer (ICL). In this tandem structure, the PVSK layer is specially designed with a nanostructured surface morphology; thus the PCBM could be filled-up for forming intimately contacted interface with PVSK layers. This design could not only efficiently increase the device performance, it could also greatly remove the hysteresis of PVSK solar cells. The study indicates that doped MoO3 as the step layer plays a key role in protecting the underlying layer against multi-solution processes and aids in the efficient recombination of electrons and holes generated from the sub-cells. The hybrid tandem solar cell could achieve a high VOC of 1.58 V, which is the sum of those in the two sub-cells, and a high FF of 0.68, indicating the effectiveness of the multilayer ICL.

Graphical abstract: Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2015
Accepted
04 Jan 2016
First published
05 Jan 2016

Nanoscale, 2016,8, 3638-3646

Author version available

Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer

J. Liu, S. Lu, L. Zhu, X. Li and W. C. H. Choy, Nanoscale, 2016, 8, 3638 DOI: 10.1039/C5NR07457F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements