Issue 12, 2016

2,6-Bis(5,6-diisopropyl-1,2,4-triazin-3-yl)pyridine: a highly selective N-donor ligand studied by TRLFS, liquid–liquid extraction and molecular dynamics

Abstract

The complexation of Cm(III) and Eu(III) with 2,6-bis(5,6-di-i-propyl-1,2,4-triazin-3-yl)-pyridine (iPr-BTP) is studied in methanol : water (1 : 1, vol) by time-resolved laser-induced fluorescence spectroscopy (TRLFS). With increasing ligand concentration [Cm(iPr-BTP)3]3+ and [Eu(iPr-BTP)3]3+ are formed, respectively. Stability constants of log β3′([Cm(iPr-BTP)3]3+) = 16.3 ± 0.3 and log β3′([Eu(iPr-BTP)3]3+) = 14.9 ± 0.3 are determined. Thermodynamic data of the complexation reactions is obtained in a temperature range of 20–60 °C. The complexation of iPr-BTP with both metal ions is exothermic (Cm(III): ΔrH3′ = −(64.1 ± 3.0) kJ mol−1; Eu(III): ΔrH3′ = −(42.6 ± 2.0) kJ mol−1). The reaction entropy for the formation of [Eu(iPr-BTP)3]3+ is higher compared to the Cm(III) complex (Cm(III): ΔrS3′ = (96.5 ± 6.5) J mol−1 K−1; Eu(III): ΔrS3′ = (136.0 ± 15.2) J mol−1 K−1). Different complexation entropies for the formation of [Cm(iPr-BTP)3] and [Cm(nPr-BTP)3] are explained by molecular dynamics simulations. Results from liquid–liquid extraction tests confirm the ligand's peculiar extraction kinetics observed in previous studies and link them to the thermodynamic data.

Graphical abstract: 2,6-Bis(5,6-diisopropyl-1,2,4-triazin-3-yl)pyridine: a highly selective N-donor ligand studied by TRLFS, liquid–liquid extraction and molecular dynamics

Supplementary files

Article information

Article type
Paper
Submitted
25 Aug 2016
Accepted
08 Nov 2016
First published
14 Nov 2016

New J. Chem., 2016,40, 10389-10397

2,6-Bis(5,6-diisopropyl-1,2,4-triazin-3-yl)pyridine: a highly selective N-donor ligand studied by TRLFS, liquid–liquid extraction and molecular dynamics

B. B. Beele, A. Skerencak-Frech, A. Stein, M. Trumm, A. Wilden, S. Lange, G. Modolo, U. Müllich, B. Schimmelpfennig, A. Geist and P. J. Panak, New J. Chem., 2016, 40, 10389 DOI: 10.1039/C6NJ02657E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements