Issue 12, 2016

Halide ion-driven self-assembly of Zn(ii) compounds derived from an asymmetrical hydrazone building block: a combined experimental and theoretical study

Abstract

Three Zn(II) complexes, namely mononuclear derivatives [Zn(H2L)2I2]·2CH3OH (1) and [Zn(H2L)2Br2]·2CH3OH (2) and a tetranuclear cyclic compound [Zn4(H2L)4Cl8]·4CH3OH (3) {H2L = p-hydroxybenzaldehyde isonicotinoylhydrazone}, were synthesized using a self-assembly method and fully characterized. Characterization included theoretical methods and single crystal X-ray diffraction. The molecular structures of compounds 1–3 demonstrate the effect of halide ions and the binding mode of H2L on self-assembly. The arrangement of the packing patterns in 1–3 is well explained by various types of non-covalent interactions. Notably, several types of strong H-bonding, C–H⋯O, and π⋯π interactions were also observed, which assist in the formation of 3D supramolecular networks. In the isostructural compounds 1 and 2, a tripod type H-bonding interaction of H2L with the methanol molecules of crystallization was observed. Furthermore, the terminal halide ligands exert H-bonding interactions with the –OH/–NH and –CH moieties of H2L. In all compounds, the supramolecular 3D networks, driven by strong H-bonding interactions, were simplified by topologial analysis. This showed a 6-connected framework with a unique topology in 1 and 2, and an 8-connected framework with bcu topology in 3 (the latter is composed of cyclic tetrazinc(II) cluster units with 2M4-1 topology). In addition, the discussion on coordination geometries and non-covalent interactions was also supported using Hirshfeld surface analysis and DFT calculations.

Graphical abstract: Halide ion-driven self-assembly of Zn(ii) compounds derived from an asymmetrical hydrazone building block: a combined experimental and theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2016
Accepted
14 Oct 2016
First published
14 Oct 2016

New J. Chem., 2016,40, 10116-10126

Halide ion-driven self-assembly of Zn(II) compounds derived from an asymmetrical hydrazone building block: a combined experimental and theoretical study

G. Mahmoudi, F. A. Afkhami, H. S. Jena, P. Nematollahi, M. D. Esrafili, P. Garczarek, K. Van Hecke, M. Servati Gargari and A. M. Kirillov, New J. Chem., 2016, 40, 10116 DOI: 10.1039/C6NJ01534D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements