Issue 4, 2016

Kinetics and mechanism of ionic-liquid induced protein unfolding: application to the model protein HP35

Abstract

We demonstrate an approach to quantify protein unfolding times using molecular simulation in a greatly accelerated manner compared to standard MD simulations, showing up to 400 fold speed increases. The approach uses infrequent metadynamics, which has been shown to provide quantitative rates for rare events, accelerated by biasing the RMSD of the protein structure. The results are quantitatively verified against a large benchmark dataset using the model proteins chignolin and villin headpiece (HP35). Following this, we apply the algorithm to protein unfolding in ionic liquids and study the HP35 unfolding time in four different 20% (w/w) IL/water mixtures. An interesting agreement is obtained between the ordering of the anion effects and previously published experiments on anion-induced destabilization of ribonuclease A (RNase A). Additional simulations helped shed light on the molecular mechanisms that lead to accelerated unfolding in ILs that have a chaotropic or hydrophobic anion. Further simulations suggest that, in this case, the tendency of an IL to be structure forming or breaking (kosmotrope vs. chaotrope) in water is unrelated to the unfolding times. Instead, the chaotropic anions, which are also more hydrophobic, more readily bind residues from the hydrophobic core, leading to faster unfolding. This approach should be appropriate for a wide range of protein unfolding simulations in the future and aid in systematic discovery of molecular descriptors for biomolecule function in unique nanostructured environments.

Graphical abstract: Kinetics and mechanism of ionic-liquid induced protein unfolding: application to the model protein HP35

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2016
Accepted
26 Aug 2016
First published
13 Sep 2016

Mol. Syst. Des. Eng., 2016,1, 382-390

Kinetics and mechanism of ionic-liquid induced protein unfolding: application to the model protein HP35

H. Tung and J. Pfaendtner, Mol. Syst. Des. Eng., 2016, 1, 382 DOI: 10.1039/C6ME00047A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements