Issue 20, 2016

Multiple actuation microvalves in wax microfluidics

Abstract

Microvalves are an essential component of microfluidic devices. In this work, a low-consumption (<35 mJ), fast-response (<0.3 s), small footprint (<0.5 mm2) wax microvalve capable of multiple actuation is described. This phase-change microvalve is electrically controlled, simple to operate and can be easily fabricated as a fully integrated element of wax microfluidic devices through a special decal-transfer microlithographic process. The valve is inherently latched and leak-proof to at least 100 kPa. A minimum pressure of 3 kPa is required for valve opening. Maximum pressures for a successful closing in air and liquid are 90 and 40 kPa, respectively. The wax valve exhibits reversible open–close behaviour without failure for up to 10 actuation cycles in air (60 kPa) and 5 in water (30 kPa). To the best of our knowledge, this microvalve has the lowest energy consumption (two orders of magnitude lower) reported so far for a plug-type phase-change valve. Furthermore, its size, actuation mechanism and fabrication technology make it suitable for large-scale integration in microfluidic devices. Detailed characteristics in fabrication and actuation of the wax microfluidic valve as well as a test example of its performance for liquid dispensing are reported.

Graphical abstract: Multiple actuation microvalves in wax microfluidics

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2016
Accepted
02 Sep 2016
First published
02 Sep 2016

Lab Chip, 2016,16, 3969-3976

Multiple actuation microvalves in wax microfluidics

M. Díaz-González, C. Fernández-Sánchez and A. Baldi, Lab Chip, 2016, 16, 3969 DOI: 10.1039/C6LC00800C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements