Field effect nanofluidics
Abstract
Nanoscale fluid transport through conduits in the 1–100 nm range is termed as nanofluidics. Over the past decade or so, significant scientific and technological advances have occurred in the domain of nanofluidics with a transverse external electrical signal through a dielectric layer permitting control over ionic and fluid flows in these nanoscale conduits. Consequently, this special class of nanofluidic devices is commonly referred to as field effect devices, analogous to the solid-state field effect transistors that form the basis for modern electronics. In this mini-review, we focus on summarizing the recent developments in field effect nanofluidics as a discipline and evaluate both tutorially and critically the scientific and technological advances that have been reported, including a discussion on the future outlook and identifying broad open questions which suggest that there are many breakthroughs still to come in field-effect nanofluidics.