Jump to main content
Jump to site search

Issue 6, 2016
Previous Article Next Article

Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis

Author affiliations

Abstract

(Multifunctional) cyclic carbonates are generating much interest, with bio-based bis-cyclic compounds attracting attention from the polymer sector as potential renewable monomers for systems such as non-isocyanate polyurethanes. Here, the efficient synthesis of one such substrate, diglycerol dicarbonate, utilising CO2-masked N-heterocyclic carbene (NHC) organocatalysts is demonstrated. The 1,3-dialkylimidazole-2-carboxylate pre-catalyst, which can be produced both in and ex situ, yields the desired cyclic product, expressing full conversion within 3 h when using the ex situ synthesised pre-catalyst with 5 mol% loading, but can also operate with 1 mol% loading efficiently. Substituted derivatives of the imidazole-based organocatalyst have also been investigated to gauge the sensitivity of the system. A number of bio-based diols are also investigated, with 1,2-, 2,3- and 1,3-diols yielding five- and six-membered cyclic products, respectively; 1,3-diols are significantly more reluctant to cyclisation, yielding both 1- and 3-monocarbonates, dicarbonates and the cyclic products. A more in depth study was also carried out on glycerol as a substrate, both in its pure a crude form, providing insight into how impurities impact on the activity of the carbene catalyst. Through 13C-labelled reagent experiments, a mechanism is proposed for the conversion of diols to their cyclic carbonate analogues. Finally, the organocatalyst was immobilized on siliceous mesostructured cellular foam (MCF). Using an alternative activation procedure, a supported, masked NHC catalyst is achieved and characterised with DRIFTS, TGA and 13C solid-state NMR. This heterogenised catalyst can be easily recovered and reused up to three times expressing its original activity if properly regenerated by a simple ion exchange procedure. Of important note, this system can also successfully convert crude glycerol with high selectivity observed for the cyclic product.

Graphical abstract: Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Aug 2015, accepted on 01 Nov 2015 and first published on 09 Nov 2015


Article type: Paper
DOI: 10.1039/C5GC02046H
Citation: Green Chem., 2016,18, 1605-1618
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Homogeneous and heterogenised masked N-heterocyclic carbenes for bio-based cyclic carbonate synthesis

    J. A. Stewart, R. Drexel, B. Arstad, E. Reubsaet, B. M. Weckhuysen and P. C. A. Bruijnincx, Green Chem., 2016, 18, 1605
    DOI: 10.1039/C5GC02046H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements