Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2016
Previous Article Next Article

Evaluation and analysis of environmentally sustainable methodologies for extraction of betulin from birch bark with a focus on industrial feasibility

Author affiliations

Abstract

Betulin from birch bark was extracted using two principally different extraction methodologies – classical Reflux Boiling (RB) and Pressurized Liquid Extraction (PLE). The extraction methods were analyzed based on both recovery and purity as well as for RB industrial feasibility. The purity and recovery for the different extraction methods were analyzed using High Performance Liquid Chromatography (HPLC) coupled with three different detection principles: Diode Array Detection (DAD), Mass Spectrometry (MS) and Charged Aerosol Detection (CAD). The chromatographic purity was determined by all detections whereas the DAD was used also for complementary gravimetric calculations of the purity of the extracts. The MS detection (in MS and MS/MS modes) was mainly used to characterize the impurities. Two steps to increase the purity of RB extracts were evaluated – pre-boiling the bark in water and precipitation by adding water to the extract. Finally, the methods were compared in terms of amounts of betulin produced and solvent consumed. The RB method including a precipitation step produced the highest purity of betulin. However, results indicate that PLE using three cycles with the precipitation step gives similar purities as for RB. The PLE method produced up to 1.6 times higher amount of extract compared to the RB method. However, the solvent consumption (liter solvent per gram product) for PLE was around 4.5 times higher as compared to the classical RB. PLE performed with only one extraction cycle gave results more similar to RB with 1.2 times higher yield and 1.4 times higher solvent consumption. The RB process was investigated on an industrial scale using a model approach and several important key-factors could be identified. The most energy demanding step was the recycling of extraction solvent which motivates that solvent consumption should be kept low and calculations show a great putative energy reduction by decreasing the ethanol concentration used in the RB process to lower than 90%.

Graphical abstract: Evaluation and analysis of environmentally sustainable methodologies for extraction of betulin from birch bark with a focus on industrial feasibility

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Mar 2015, accepted on 17 Aug 2015 and first published on 20 Aug 2015


Article type: Paper
DOI: 10.1039/C5GC00519A
Author version
available:
Download author version (PDF)
Citation: Green Chem., 2016,18, 516-523
  • Open access: Creative Commons BY license
  •   Request permissions

    Evaluation and analysis of environmentally sustainable methodologies for extraction of betulin from birch bark with a focus on industrial feasibility

    M. E. Fridén, F. Jumaah, C. Gustavsson, M. Enmark, T. Fornstedt, C. Turner, P. J. R. Sjöberg and J. Samuelsson, Green Chem., 2016, 18, 516
    DOI: 10.1039/C5GC00519A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements