Issue 12, 2016

High efficiency solution-processed thin-film Cu(In,Ga)(Se,S)2 solar cells

Abstract

The polycrystalline chalcopyrite Cu(In,Ga)(Se,S)2 (CIGS) solar cell has been considered one of the most promising alternatives to conventional silicon solar cells, due to its achieving the highest power conversion efficiency (PCE) among all the thin-film photovoltaic technologies, potentially lowered production cost and compatibility with large area flexible substrates. Unfortunately, almost all the high efficiency CIGS devices are presently fabricated via vacuum-based techniques, which still require expensive facilities and high power consumption, thus leaving the fabrication cost issue unresolved. Herein, a hydrazine-based, solution processed CIGS device with high performance has been demonstrated through the construction of a composition grading profile of the CIGS absorber layer, which enhances the charge collection efficiency and maximizes the solar spectrum absorption. ZnO nanoparticles (ZnO NP), as the window layer, are proven to be an ideal alternative to sputtered ZnO, benefiting from high optical transparency, smooth and defectless interface, adjacent to the CIGS absorber layer. The CIGS solar cell with a certified PCE of 17.3% is achieved, which is the world record efficiency for solution-based CIGS solar cells, and also shortens the efficiency gap towards vacuum-based devices.

Graphical abstract: High efficiency solution-processed thin-film Cu(In,Ga)(Se,S)2 solar cells

Supplementary files

Article information

Article type
Communication
Submitted
12 Aug 2016
Accepted
18 Oct 2016
First published
18 Oct 2016

Energy Environ. Sci., 2016,9, 3674-3681

High efficiency solution-processed thin-film Cu(In,Ga)(Se,S)2 solar cells

T. Zhang, Y. Yang, D. Liu, S. C. Tse, W. Cao, Z. Feng, S. Chen and L. Qian, Energy Environ. Sci., 2016, 9, 3674 DOI: 10.1039/C6EE02352E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements