Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies†
Abstract
Coaxial nanocables (CNs) with an SiC core and a SiO2 shell were fabricated at a large scale by a simple and low cost method. The thickness of the SiO2 shell could be controlled by etching in 1 M NaOH aqueous solution for different amounts of time. XRD, SEM, TEM, HRTEM, PL and UV–Vis spectra were adopted to investigate the morphology and optical properties of the obtained SiC/SiO2CNs. Blue photoluminescence was observed at room temperature from the coaxial structure. The intensity of the single emission band at 468 nm (2.65 eV) exhibited a strong dependence on the thickness of the SiO2 layer and was significantly enhanced when the outer SiO2 shell had a thickness of 2.8 nm. The enhancement effect was attributed to oxygen vacancies (OV) and this was verified by deliberately enriching the surface OV through hydrogen treatment.
Please wait while we load your content...