Issue 16, 2016

Competitive pathways of methane activation on Zn2+-modified ZSM-5 zeolite: H/D hydrogen exchange with Brønsted acid sites versus dissociative adsorption to form Zn-methyl species

Abstract

To clarify the pathways of methane activation on Zn-modified high-silica zeolites, the kinetics of both dissociative adsorption of the alkane C–H bond to form Zn-methyl species and H/D hydrogen exchange between the alkane and Brønsted acid sites (BAS) have been analyzed for Zn2+/H-ZSM-5 containing exclusively Zn2+ cations (no ZnO species in the zeolite) and BAS. Analysis of the kinetics was performed by 1H MAS NMR spectroscopy in situ at 410–540 K. In spite of the activation barrier for H/D hydrogen exchange (68 kJ mol−1) being larger than that for Zn-methyl formation (46 kJ mol−1), the rate of H/D hydrogen exchange has been found to be one order of magnitude higher than the rate of the formation of Zn-methyl species within the studied temperature range. This implies that Zn-methyl species cannot be involved in the reaction of H/D hydrogen exchange as the intermediate responsible for facilitation of this reaction due to the presence of Zn2+ cations in the zeolite (J. Catal., 2008, 253, 11). A new mechanism has been suggested for C–H bond activation in methane on the zeolite modified with Zn2+ cations. It includes first the formation of a transient molecular complex of methane with Zn2+ cations. The complex either is further involved in the reaction of H/D hydrogen exchange or evolves toward the formation of Zn-methyl species and BAS.

Graphical abstract: Competitive pathways of methane activation on Zn2+-modified ZSM-5 zeolite: H/D hydrogen exchange with Brønsted acid sites versus dissociative adsorption to form Zn-methyl species

Article information

Article type
Paper
Submitted
21 Apr 2016
Accepted
31 May 2016
First published
31 May 2016

Catal. Sci. Technol., 2016,6, 6381-6388

Competitive pathways of methane activation on Zn2+-modified ZSM-5 zeolite: H/D hydrogen exchange with Brønsted acid sites versus dissociative adsorption to form Zn-methyl species

S. S. Arzumanov, A. A. Gabrienko, D. Freude and A. G. Stepanov, Catal. Sci. Technol., 2016, 6, 6381 DOI: 10.1039/C6CY00878J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements