Issue 22, 2016

Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane

Abstract

In this work, we proposed a novel catalyst, molybdenum phosphide (MoP), which exhibited high coking and oxidation resistance for dry reforming of CH4 with CO2 (DRM). The catalytic stability of MoP was found to be superior to that of Ni/Mo2C (recently known to be an efficient non-noble metal catalyst for DRM). At higher temperatures (≥800 °C) and weight hourly space velocity (WHSV) values, the MoP catalyst would deactivate due to the oxidation of the catalyst to MoO2 with the loss of P, while operation at a lower temperature (750 °C) and WHSV resulted in stabilization of the MoP for the duration of the experiments (100 h). This might be due to a decrease in the oxidant-to-catalyst exposure. It was proposed that there were two possible DRM mechanisms (redox-type and noble metal-type) over the MoP catalyst, which were similar to those over the Ni/Mo2C catalyst. Nevertheless, the contribution of the noble metal-type mechanism to DRM activity on MoP was more than that on Ni/Mo2C, which accounted for the fact that the former showed better stability than the latter. It was suggested that the noble metal-type mechanism should be preferable for DRM over carbide and phosphide catalysts.

Graphical abstract: Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2016
Accepted
20 Sep 2016
First published
21 Sep 2016

Catal. Sci. Technol., 2016,6, 7996-8004

Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane

Z. Yao, F. Luan, Y. Sun, B. Jiang, J. Song and H. Wang, Catal. Sci. Technol., 2016, 6, 7996 DOI: 10.1039/C6CY00836D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements