Issue 16, 2016

Chemical functionalization of N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical role of specific N-functionalities in the oxygen reduction reaction

Abstract

In this paper, we describe the combination of two different synthetic approaches to carbon nanotube N-decoration/doping: the chemical functionalization with tailored N-pyridinic groups and the classical Chemical Vapor Deposition (CVD) technique. Accordingly, CVD-prepared N-doped CNMs (NMWs) and their N-decorated (chemically functionalized) counterparts (NMW@N1,2) have been prepared and used as metal-free electrocatalysts for the oxygen reduction reaction (ORR). It has been demonstrated that chemical functionalization occurs on the NMW surface sites responsible for their inherent electrochemical properties and “switches them off”. As a result, the ORR promoted by NMW@N1,2 is fully controlled by the appended N-heterocycles. A comparative analysis of N-functionalized samples and N-doped (CVD prepared) materials is used to foster the hypothesis of a unique N-configuration (N-pyridinic) responsible for the overall electrochemical performance in NMWs. In addition to that, original electrochemical insights unveiled during the study are discussed and the truly metal-free action of NMW in ORR catalysis is demonstrated.

Graphical abstract: Chemical functionalization of N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical role of specific N-functionalities in the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2016
Accepted
06 May 2016
First published
09 May 2016

Catal. Sci. Technol., 2016,6, 6226-6236

Chemical functionalization of N-doped carbon nanotubes: a powerful approach to cast light on the electrochemical role of specific N-functionalities in the oxygen reduction reaction

G. Tuci, C. Zafferoni, A. Rossin, L. Luconi, A. Milella, M. Ceppatelli, M. Innocenti, Y. Liu, C. Pham-Huu and G. Giambastiani, Catal. Sci. Technol., 2016, 6, 6226 DOI: 10.1039/C6CY00796A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements