Issue 14, 2016

Morphology-dependent performance of Zr–CeVO4/TiO2 for selective catalytic reduction of NO with NH3

Abstract

A novel Zr–CeVO4/TiO2 catalyst was developed for the selective catalytic reduction (SCR) of NO with NH3. Both TiO2 nanosheets (TiO2-NS) and nanoparticles (TiO2-NP) with different crystal facets were used as supports for the catalyst. It was found that the TiO2-NS-supported catalyst showed much better activity, stability and H2O/SO2 durability than the TiO2-NP-supported catalyst. In particular, the catalyst loading amount was much lower than those of previously reported vanadate-based SCR catalysts. The crystal structures and morphologies were analysed by X-ray diffraction (XRD), Raman spectroscopy and (high-resolution) transmission electron microscopy ((HR)TEM). The redox properties, surface active species and acid sites of the catalysts were investigated through hydrogen temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), ammonia and nitrogen oxide temperature-programmed desorption (NH3-TPD and NOx-TPD) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTs) experiments. The improved activity at lower temperature was due to the presence of more active oxygen species and Brønsted acid sites, as well as the formation of NO2 on the surface of the TiO2 nanosheets which have exposed (001) facets. The enhanced stability and H2O/SO2 durability of Zr–CeVO4/TiO2-NS was due to the limited formation of NH4NO3 and (NH4)2SO4/NH4HSO4. The excellent low operation temperature, low vanadium content and absence of WO3(MoO3) in this catalyst indicated that it has promising potential as a SCR catalyst for practical applications.

Graphical abstract: Morphology-dependent performance of Zr–CeVO4/TiO2 for selective catalytic reduction of NO with NH3

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2016
Accepted
17 Mar 2016
First published
21 Mar 2016

Catal. Sci. Technol., 2016,6, 5543-5553

Morphology-dependent performance of Zr–CeVO4/TiO2 for selective catalytic reduction of NO with NH3

X. Zhao, L. Huang, S. Namuangruk, H. Hu, X. Hu, L. Shi and D. Zhang, Catal. Sci. Technol., 2016, 6, 5543 DOI: 10.1039/C6CY00326E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements