Issue 45, 2016

Alchemical screening of ionic crystals

Abstract

We introduce alchemical perturbations as a rapid and accurate tool to estimate fundamental structural and energetic properties in pure and mixed ionic crystals. We investigated formation energies, lattice constants, and bulk moduli for all sixteen iso-valence-electron combinations of pure pristine alkali halides involving elements Me ∈ {Na, K, Rb, Cs} and X ∈ {F, Cl, Br, I}. For rock salt, zinc-blende, and cesium chloride symmetry, alchemical Hellmann–Feynman derivatives, evaluated along lattice scans of sixteen reference crystals, have been obtained for coupling to all respective 16 × 15 target crystals. Mean absolute errors (MAEs) are on par with the density functional theory level of accuracy for energies and bulk moduli. The predicted lattice constants are less accurate but reproduce qualitative trends. The reference salt NaCl affords the most accurate alchemical estimates of relative energies (MAE < 40 meV per atom). The best predictions of lattice constants are based on NaF as a reference salt (MAE < 0.5 Å), accounting only for qualitative trends. The best reference salt for the prediction of bulk moduli is CsCl (MAE < 0.4 × 1011 dynes cm−2). The alchemical predictions distinguish competing rock salt and cesium chloride phases in binary and ternary solid mixtures with CsCl. Using pure RbI as a reference salt, they reproduce the reversal of the rock salt/cesium chloride stability trend for binary MeX1−xCsClx as well as for ternary MeX0.5−0.5x(Me′Y)0.5−0.5xCsClx mixtures.

Graphical abstract: Alchemical screening of ionic crystals

Article information

Article type
Paper
Submitted
17 Jun 2016
Accepted
27 Sep 2016
First published
12 Oct 2016

Phys. Chem. Chem. Phys., 2016,18, 31078-31091

Alchemical screening of ionic crystals

A. Solovyeva and O. A. von Lilienfeld, Phys. Chem. Chem. Phys., 2016, 18, 31078 DOI: 10.1039/C6CP04258A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements