Issue 44, 2016

Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure

Abstract

The 3-dimensional (3D) atomic-scale structure of newly discovered face-centered cubic (fcc) and conventional hexagonal close packed (hcp) type ruthenium (Ru) nanoparticles (NPs) of 2.2 to 5.4 nm diameter were studied using X-ray pair distribution function (PDF) analysis and reverse Monte Carlo (RMC) modeling. Atomic PDF based high-energy X-ray diffraction measurements show highly diffuse X-ray diffraction patterns for fcc- and hcp-type Ru NPs. We here report the atomic-scale structure of Ru NPs in terms of the total structure factor and Fourier-transformed PDF. It is found that the respective NPs have substantial structural disorder over short- to medium-range order atomic distances from the PDF analysis. The first-nearest-neighbor peak analyses show a significant size dependence for the fcc-type Ru NPs demonstrating the increase in the peak height due to an increase in the number density as a function of particle size. The bond angle and coordination number (CN) distribution for the RMC-simulated fcc- and hcp-type Ru NP models indicated inherited structural features from their bulk counterparts. The CN analysis of the whole NP and surface of each RMC model of Ru NPs show the low activation energy packing sites on the fcc-type Ru NP surface atoms. Finally, our newly defined order parameters for RMC simulated Ru NP models suggested that the enhancement of the CO oxidation activity of fcc-type NPs was due to a decrease in the close packing ordering that resulted from the increased NP size. These structural findings could be positively supported for synthesized low-cost and high performance nano-sized catalysts and have potential application in fuel-cell systems and organic synthesis.

Graphical abstract: Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2016
Accepted
11 Oct 2016
First published
11 Oct 2016
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2016,18, 30622-30629

Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure

L. S. R. Kumara, O. Sakata, S. Kohara, A. Yang, C. Song, K. Kusada, H. Kobayashi and H. Kitagawa, Phys. Chem. Chem. Phys., 2016, 18, 30622 DOI: 10.1039/C6CP04088H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements