Issue 40, 2016

A comparative study of small 3d-metal oxide (FeO)n, (CoO)n, and (NiO)n clusters

Abstract

Geometrical and electronic structures of the 3d-metal oxide clusters (FeO)n, (CoO)n, and (NiO)n are computed using density functional theory with the generalized gradient approximation in the range of 1 ≤ n ≤ 10. It is found that the cluster geometries are similar in the (FeO)n and (CoO)n series but noticeably different in the (NiO)n series for several values of n. All of the lowest total energy states are found to possess relatively small spin multiplicities and are either antiferromagnetic or ferrimagnetic except for the states of (NiO)3, (NiO)4, (NiO)9, and (NiO)10, which are ferromagnetic. The computed polarizabilities per atom undergo a steep decrease when compared to the atomic values of the MO monomers (M = Fe, Co, and Ni). Surprisingly, the polarizability does not strongly depend on either M or n in all the considered series when n varies from 3 to 10. The binding energies per atom are the largest in the (FeO)n series, followed by the binding energies of (CoO)n and (NiO)n.

Graphical abstract: A comparative study of small 3d-metal oxide (FeO)n, (CoO)n, and (NiO)n clusters

Article information

Article type
Paper
Submitted
12 May 2016
Accepted
12 Sep 2016
First published
12 Sep 2016

Phys. Chem. Chem. Phys., 2016,18, 27858-27867

A comparative study of small 3d-metal oxide (FeO)n, (CoO)n, and (NiO)n clusters

G. L. Gutsev, K. G. Belay, K. V. Bozhenko, L. G. Gutsev and B. R. Ramachandran, Phys. Chem. Chem. Phys., 2016, 18, 27858 DOI: 10.1039/C6CP03241A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements