Ultrathin epitaxial InAs layer relaxation on cross-hatch stress fields
Abstract
Thin, highly-strained InAs layers epitaxially grown on GaAs/InGaAs cross-hatch surfaces undergo postgrowth transformations that yield several morphologies ranging from aligned quantum wires to quantum dots and micron-scale pyramids. The shape varieties result from the multiple pathways created from the combined/competitive effects of asymmetric adatom diffusions, subsurface stress fields and misfit energy minimization. These morphologies reveal the multiple outcomes of metastable states between the two- and the three-dimensional transition that if properly captured and engineered may open up new windows of opportunities both in devices such as sensors and in fundamental quantum studies.

Please wait while we load your content...