Issue 55, 2016

A four-directional non-fullerene acceptor based on tetraphenylethylene and diketopyrrolopyrrole functionalities for efficient photovoltaic devices with a high open-circuit voltage of 1.18 V

Abstract

Through the conjunction of tetraphenylethylene and diketopyrrolopyrrole functionalities, a novel four-directional non-fullerene electron acceptor (denoted as 4D) was designed, synthesized and characterized. The new chromophore is highly soluble (for instance >30 mg mL−1 in o-dichlorobenzene), thermally stable, and exhibits energy levels matching those of the conventional and routinely used donor polymer poly(3-hexyl thiophene). A power conversion efficiency of 3.86% was obtained in solution-processable bulk-heterojunction devices with a very high open circuit voltage of 1.18 V.

Graphical abstract: A four-directional non-fullerene acceptor based on tetraphenylethylene and diketopyrrolopyrrole functionalities for efficient photovoltaic devices with a high open-circuit voltage of 1.18 V

Supplementary files

Article information

Article type
Communication
Submitted
04 May 2016
Accepted
24 May 2016
First published
24 May 2016

Chem. Commun., 2016,52, 8522-8525

A four-directional non-fullerene acceptor based on tetraphenylethylene and diketopyrrolopyrrole functionalities for efficient photovoltaic devices with a high open-circuit voltage of 1.18 V

A. Rananaware, A. Gupta, J. Li, A. Bilic, L. Jones, S. Bhargava and S. V. Bhosale, Chem. Commun., 2016, 52, 8522 DOI: 10.1039/C6CC03730E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements