Issue 8, 2016

PGMA-based gene carriers with lipid molecules

Abstract

Lipids, as the greatest constituent in cell membranes, have been widely used for biomedical applications because of their excellent biological properties. The introduction of membrane lipid molecules into gene vectors would embody greater biocompatibility, cellular uptake and transfection efficiency. In this work, one flexible strategy for readily conjugating lipid molecules with polycations was proposed based on atom transfer radical polymerization to produce a series of cholesterol (CHO)- and phosphatidylinositol (PI)-terminated ethanolamine-functionalized poly(glycidyl methacrylate)s, namely CHO-PGEAs and PI-PGEAs, as effective gene carriers. CHO-PGEAs and PI-PGEAs truly demonstrated much better transfection performances compared to linear ethanolamine-functionalized poly(glycidyl methacrylate) (denoted as BUCT-PGEA) counterparts and traditional standard branched polythylenimine (PEI, 25 kDa). In addition, the good antitumor effects of CHO-PGEA and PI-PGEA were confirmed with suppressor tumor gene p53 systems in vitro and in vivo. The present work could provide a new strategy to develop effective cationic conjugation of lipid molecules for gene therapy.

Graphical abstract: PGMA-based gene carriers with lipid molecules

Supplementary files

Article information

Article type
Paper
Submitted
26 May 2016
Accepted
24 Jun 2016
First published
04 Jul 2016

Biomater. Sci., 2016,4, 1233-1243

PGMA-based gene carriers with lipid molecules

C. Xu, B. Yu, H. Hu, M. N. Nizam, W. Yuan, J. Ma and F. Xu, Biomater. Sci., 2016, 4, 1233 DOI: 10.1039/C6BM00360E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements