Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 5, 2016
Previous Article Next Article

Articular cartilage: from formation to tissue engineering

Author affiliations


Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template–cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

Graphical abstract: Articular cartilage: from formation to tissue engineering

Back to tab navigation

Article information

29 Jan 2016
12 Feb 2016
First published
29 Feb 2016

Biomater. Sci., 2016,4, 734-767
Article type
Review Article

Articular cartilage: from formation to tissue engineering

S. Camarero-Espinosa, B. Rothen-Rutishauser, E. J. Foster and C. Weder, Biomater. Sci., 2016, 4, 734
DOI: 10.1039/C6BM00068A

Social activity

Search articles by author