Jump to main content
Jump to site search

Issue 9, 2016
Previous Article Next Article

A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film

Author affiliations

Abstract

Silver nanoparticles (AgNPs) and reduced graphene oxide (rGO) hybrid nanoporous structures fabricated by the layer-by-layer (LBL) electrostatic self-assembly have been applied as a simple platform for the rapid analysis of carboxyl-containing small molecules by surface-assisted laser desorption/ionization (D/I) mass spectrometry (SALDI-MS). By the simple one-step deposition of analytes onto the (AgNP/rGO)9 multilayer film, the MS measurements of various carboxyl-containing small molecules (including amino acids, fatty acids and organic dicarboxylic acids) can be done. In contrast to other energy transfer materials relative to AgNPs, the signal interferences of a Ag cluster (Agn+ or Agn) and a C cluster (Cn+ or Cn) have been effectively reduced or eliminated. The effects of various factors, such as the pore structure and composition of the substrates, on the efficiency of D/I have been investigated by comparing with the (AgNP)9 LBL nanoporous structure, (AgNP/rGO)9/(SiO2NP)6 LBL multilayer film and AgNP/prGO nanocomposites.

Graphical abstract: A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film

Back to tab navigation

Supplementary files

Article information


Submitted
26 Nov 2015
Accepted
19 Dec 2015
First published
21 Dec 2015

Analyst, 2016,141, 2712-2726
Article type
Paper

A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film

M. Hong, L. Xu, F. Wang, Z. Geng, H. Li, H. Wang and C. Li, Analyst, 2016, 141, 2712
DOI: 10.1039/C5AN02440D

Social activity

Search articles by author

Spotlight

Advertisements