Issue 24, 2015

Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles

Abstract

Several diseases and disorders, including cancer are endorsed by excessive oxidative stress caused due to the incomplete removal of reactive oxygen species (ROS) by the antioxidant defense system of the body. Therefore, present interest among the scientific community lies in the development of a highly stable, biocompatible artificial enzymatic system that possesses a high ROS scavenging activity over a period of time. In recent years, catalytic nanoparticles emerged as a potential candidate in the field of nanomedicine. Due to their inherent catalytic properties, they are exploited as an artificial enzyme (nanozyme), to reinstate or correct aberrant enzymatic activities in patients. Among them, cerium oxide nanoparticles/nanoceria (CNPs) emerged as a potent artificial redox enzyme, mimicking the activity of superoxide dismutase (SOD) and catalase and endure a tremendous ROS scavenging potential as depicted in a surfeit of human cell lines and animal models. In the present article, a facile synthesis of biocompatible nanoceria encapsulated albumin nanoparticles (BCNPs) via desolvation technique that lead to the abatement of intracellular ROS is reported. Physico-chemical characterizations of as-prepared BCNPs corroborate the formation of a highly monodispersed, spherical and stable aqueous delivery system. Interestingly, such entrapment does not affect the enzyme mimetic activity of CNPs, as demonstrated by SOD assay. The biocompatibility and ROS scavenging potential of BCNPs were further assessed in vitro against human lung epithelial cells by cell viability assay and flow cytometric analysis, respectively. The quantitative and qualitative assessments of cellular uptake of BCNPs were done by inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) analysis. Furthermore, the BCNPs preserve the cell's antioxidant defense system and protect them from oxidant-mediated apoptosis as confirmed by semi-quantitative RT-PCR analysis. Thus, the as-prepared BCNPs could provide an opportunity to be utilized as a potential candidate against ROS induced diseases and disorders.

Graphical abstract: Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2015
Accepted
11 May 2015
First published
11 May 2015

J. Mater. Chem. B, 2015,3, 4843-4852

Author version available

Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles

B. Bhushan and P. Gopinath, J. Mater. Chem. B, 2015, 3, 4843 DOI: 10.1039/C5TB00572H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements