Issue 48, 2015

Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers

Abstract

Easily prepared and stable solution-processed carbon dots (CDs) have been used and systematically investigated as the electron transport layers (ETLs) for both small-molecule and polymer-based solar cells. Significantly enhanced device performance and lifetime are observed. The enhanced performance is mainly driven by the improvements of the short circuit current (Jsc) and the fill factor (FF), caused by decreasing the work function of Al electrodes and series resistance, increasing shunt resistances, and balancing electrons and hole mobility. Therefore, the devices with CDs as the ETLs have higher charge transport and collection efficiency. In addition, lifetimes of the devices with CDs as the ETLs are also significantly improved, due to the much better air-stability of CD materials compared to LiF as the ETLs. And another reason is that it can efficiently prevent the formation of an unstable cathode contact for the diffusion of Al ions at the interface. These results indicate that CDs, relatively cheap and stable materials, have great potential to be promising ETL materials for industrial-scale manufacture of organic solar cells.

Graphical abstract: Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2015
Accepted
12 Nov 2015
First published
12 Nov 2015

J. Mater. Chem. C, 2015,3, 12403-12409

Author version available

Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers

H. Zhang, Q. Zhang, M. Li, B. Kan, W. Ni, Y. Wang, X. Yang, C. Du, X. Wan and Y. Chen, J. Mater. Chem. C, 2015, 3, 12403 DOI: 10.1039/C5TC02957K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements