Issue 35, 2015

Cross-linkable random copolymers as dielectrics for low-voltage organic field-effect transistors

Abstract

A large number of cross-linkable dielectrics with good dielectric properties have been reported; however, all of them suffer from disadvantages like uncontrolled pre-crosslinking, necessity of high process temperatures and the need for an additional cross-linking compound. In this contribution, two new poly(methyl methacrylate) polymers are introduced which can be cross-linked due to the attached benzyl azide (N3) monomer units making the addition of hardeners or initiators obsolete. The synthesis of the copolymers as well as their successful characterization and usage as gate dielectrics for organic field-effect transistors is demonstrated. The investigated polymers have been labeled PAZ 12 and PAZ 14 according to their azide content in mol%. The additional building blocks of the polymers are methyl methacrylate for PAZ 12 and methyl methacrylate and styrene monomer units in about an equal ratio for PAZ 14. Spin-coated thin films were cross-linked by a thermal treatment at 110 °C followed by an UV exposure at a wavelength of 254 nm yielding insoluble, smooth and electrically dense polymeric networks. Optimal cross-linking parameters were obtained using infrared spectroscopy to follow the N3 vibrational mode. Its disappearance confirms a complete cross-linking reaction, and thus fully reacted azide groups facilitate the analytics. The dielectric properties of the cross-linked thin films have been studied by impedance spectroscopy. The application of double layer dielectrics results in lower dielectric losses and lower leakage currents in the subsequently produced pentacene-based field-effect transistors. These devices operate at voltages below −6 V and show hysteresis-free current–voltage characteristics with hole mobilities up to 0.16 cm2 V−1 s−1. PAZ 12 appears to be superior to PAZ 14 due to a lower total layer thickness of down to 92 nm still providing good insulation in the transistor presumably related to a lower free volume that arises in the cross-linked network of the two-component containing copolymer PAZ 12.

Graphical abstract: Cross-linkable random copolymers as dielectrics for low-voltage organic field-effect transistors

Article information

Article type
Paper
Submitted
05 Feb 2015
Accepted
31 Jul 2015
First published
04 Aug 2015

J. Mater. Chem. C, 2015,3, 9217-9223

Cross-linkable random copolymers as dielectrics for low-voltage organic field-effect transistors

E. Reis Simas, E. S. H. Kang, A. Gassmann, E. Katholing, S. Janietz and H. von Seggern, J. Mater. Chem. C, 2015, 3, 9217 DOI: 10.1039/C5TC00352K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements