Issue 15, 2015

Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility

Abstract

Two bis-cyclometalated iridium complexes (Ir1 and Ir2) with trifluoromethyl substituted bipyridine (2′,6′-bis(trifluoromethyl)-2,3′-bipyridine (L1) and 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine (L2)) as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand were prepared, and their X-ray crystallography, photoluminescence, electrochemistry properties were investigated. The Ir1 and Ir2 complexes show green emissions at about 500 and 502 nm with high quantum efficiencies of 0.63 and 0.93, respectively. Moreover, they also exhibit higher electron mobility than that of Alq3 (tris-(8-hydroxyquinoline)aluminium). The organic light emitting diodes (OLEDs) with the structure of ITO/TAPC (1,1-bis[4-(di-p-tolylamino)phenyl]cyclohexane, 40 nm)/mCP (1,3-bis(9H-carbazol-9-yl)benzene, 10 nm)/Ir complex (8 wt%): PPO21 (3-(diphenylphosphoryl)-9-(4-(diphenylphosphoryl)phenyl)-9H-carbazole, 25 nm)/TmPyPB (1,3,5-tri(m-pyrid-3-yl-phenyl)benzene, 50 nm)/LiF (1 nm)/Al (100 nm) showed excellent performances, partly due to their high quantum efficiency and high electron mobility. For the devices G1 and G2, the maximum current efficiency (ηc) values are as high as 101.96/99.97 cd A−1 and the maximum external quantum efficiencies of 31.6% and 30.5% with low electroluminescence efficiency roll-off. The ηc data still remain over 90 cd A−1 even at the luminance of 10 000 cd m−2, which proves that the complexes have potential applications as efficient green emitters in OLEDs.

Graphical abstract: Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2015
Accepted
15 Feb 2015
First published
18 Feb 2015

J. Mater. Chem. C, 2015,3, 3694-3701

Efficient OLEDs with low efficiency roll-off using iridium complexes possessing good electron mobility

Q. Xu, X. Liang, S. Zhang, Y. Jing, X. Liu, G. Lu, Y. Zheng and J. Zuo, J. Mater. Chem. C, 2015, 3, 3694 DOI: 10.1039/C5TC00073D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements