Synergistic effects of a novel free-standing reduced graphene oxide film and surface coating fibronectin on morphology, adhesion and proliferation of mesenchymal stem cells†
Abstract
Graphene films have broad use in engineering, energy and biomedical applications. The cost-effective, eco-friendly and easy to scale-up fabrication methods of graphene films are always highly desired. In this work, we develop a novel fabrication method of free-standing reduced graphene oxide (RGO) films by vacuum filtration of graphene oxide aqueous solution through a nanofiber membrane in combination with chemical reduction. Instead of the smooth surface, the generated RGO films have nanoscale patterns transferred from the nanofiber membrane and controlled in a large range by varying the parameters of the electrospinning process. The cellular culture results of the human marrow mesenchymal stem cells (hMSCs) show that the fibronectin modified RGO films could exhibit excellent biocompatibility, which could be attributed to the synergistic effects of the RGO films including both surface morphology and fibronectin modification. The novel fabrication method greatly enhances the fabrication capability and the potential of graphene films for application in cell culture, tissue engineering as well as in other engineering and biomedical applications.
- This article is part of the themed collection: 2015 Journal of Materials Chemistry B Hot Papers