Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2015
Previous Article Next Article

An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering

Author affiliations

Abstract

In this study, a multi-benzaldehyde functionalized poly(ethylene glycol) analogue, poly(ethylene oxide-co-glycidol)-CHO (poly(EO-co-Gly)-CHO), was designed and synthesized for the first time, and was applied as a cross-linker to develop an injectable hydrogel system. Simply mixing two aqueous precursor solutions of glycol chitosan (GC) and poly(EO-co-Gly)-CHO led to the formation of chemically cross-linked hydrogels under physiological conditions in situ. The cross-linking was attributed to a Schiff's base reaction between amino groups of GC and aldehyde groups of poly(EO-co-Gly)-CHO. The gelation time, water uptake, mechanical properties and network morphology of the GC/poly(EO-co-Gly) hydrogels were well modulated by varying the concentration of poly(EO-co-Gly)-CHO. Degradation of the in situ formed hydrogels was confirmed both in vitro and in vivo. The integrity of the GC/poly(EO-co-Gly) hydrogels was subcutaneously maintained for up to 12 weeks in ICR mice. The feasibility of encapsulating chondrocytes in the GC/poly(EO-co-Gly) hydrogels was assessed. Live/Dead staining assay demonstrated that the chondrocytes were highly viable in the hydrogels, and no dedifferentiation of chondrocytes was observed after 2 weeks of in vitro culture. Cell counting kit-8 assay gave evidence of the remarkably sustained proliferation of the encapsulated chondrocytes. Maintenance of the chondrocyte phenotype was also confirmed with an examination of characteristic gene expression. These features suggest that GC/poly(EO-co-Gly) hydrogels hold potential as an artificial extracellular matrix for cartilage tissue engineering.

Graphical abstract: An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering

Back to tab navigation

Supplementary files

Article information


Submitted
15 Oct 2014
Accepted
25 Nov 2014
First published
01 Dec 2014

J. Mater. Chem. B, 2015,3, 1268-1280
Article type
Paper
Author version available

An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering

L. Cao, B. Cao, C. Lu, G. Wang, L. Yu and J. Ding, J. Mater. Chem. B, 2015, 3, 1268
DOI: 10.1039/C4TB01705F

Social activity

Search articles by author

Spotlight

Advertisements