Issue 6, 2015

Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy

Abstract

Nanotechnology has recently attracted great attention in biomedical research. Current nanoparticle approaches generally require further surface decoration with targeting ligands, peptides or proteins to achieve selective cancer imaging and therapy. This surface functionalization often complicates nanoparticles and leads to protein corona or varied nanoparticle uptake. In this work, we report a facile approach for selective cancer cell image-guided photothermal therapy by fabricating theranostic microparticles (MPs) using conjugated polymers (CPs) as the imaging and therapeutic agents. Through fine tuning of the backbone structures, we synthesized two CPs, poly[9,9-bis(4-(2-ethylhexyl)phenyl)fluorene-alt-co-6,7-bis(4-(hexyloxy)phenyl)-4,9-di(thiophen-2-yl)-thiadiazoloquinoxaline] (PFTTQ) with high near infrared (NIR) molar absorptivity and poly(9,9-dihexylfluorene-alt-2,1,3-benzothiadiazole) (PFBT) with bright green emission. The two CPs were physically blended into single particles with ∼3 μm size, which was confirmed by scanning electron microscopy (SEM) and confocal fluorescence imaging. Although without any surface functionalization, the obtained CP MPs showed selective internalization into MCF-7 cancer cells over NIH-3T3 normal cells, while CP nanoparticles showed similar uptake into both cell lines. Moreover, the CP MPs could selectively kill MCF-7 cells upon NIR irradiation, which showed a half-maximal inhibitory concentration (IC50) of 30 μg mL−1 based on PFTTQ concentration.

Graphical abstract: Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2014
Accepted
27 Nov 2014
First published
03 Dec 2014

J. Mater. Chem. B, 2015,3, 1135-1141

Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy

G. Feng, J. Liu, J. Geng and B. Liu, J. Mater. Chem. B, 2015, 3, 1135 DOI: 10.1039/C4TB01590H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements