Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 48, 2015
Previous Article Next Article

Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability

Author affiliations

Abstract

Developing high-performance photocatalytic materials is of huge significance and highly desirable for fulfilling the pressing need in environmental remediation. In this work, we demonstrate the use of bismuth nitrate Bi2O2(OH)(NO3) as an absorbing photocatalyst, which integrates multiple superiorities, like a [Bi2O2]2+ layered configuration, a non-centrosymmetric (NCS) polar structure and highly reactive {001} facets. Bi2O2(OH)(NO3) nanosheets are obtained by a facile one-pot hydrothermal route using Bi(NO3)3·5H2O as the sole raw material. Photocatalysis assessment revealed that Bi2O2(OH)(NO3) holds an unprecedented photooxidation ability in contaminant decomposition, far out-performing the well-known photocatalysts BiPO4, Bi2O2CO3, BiOCl and P25 (commercial TiO2). Particularly, it displays a universally powerful catalytic activity against various stubborn industrial contaminants and pharmaceuticals, including phenol, bisphenol A, 2,4-dichlorophenol and tetracycline hydrochloride. In-depth experimental and density functional theory (DFT) investigations co-uncovered that the manifold advantages, such as large polarizability and rational band structure, as well as exposed {001} active facets, induced robust generation of strong oxidating superoxide radicals (˙O2) in the conduction band and hydroxyl radicals (˙OH) in the valence band, thus enabling Bi2O2(OH)(NO3) to have a powerful and durable photooxidation capability. Bi2O2(OH)(NO3) also presents high photochemical stability. This work not only rendered a highly active and stable photocatalyst for practical applications, but also laid a solid foundation for future initiatives aimed at designing new photoelectronic materials by manipulating multiple advantageous factors.

Graphical abstract: Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Sep 2015, accepted on 11 Nov 2015 and first published on 12 Nov 2015


Article type: Paper
DOI: 10.1039/C5TA07655B
Citation: J. Mater. Chem. A, 2015,3, 24547-24556

  •   Request permissions

    Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability

    H. Huang, Y. He, X. Li, M. Li, C. Zeng, F. Dong, X. Du, T. Zhang and Y. Zhang, J. Mater. Chem. A, 2015, 3, 24547
    DOI: 10.1039/C5TA07655B

Search articles by author

Spotlight

Advertisements