Issue 47, 2015

Trimodal hierarchical carbide-derived carbon monoliths from steam- and CO2-activated wood templates for high rate lithium sulfur batteries

Abstract

Hierarchically structured biomorphic carbide-derived carbon (CDC) materials are obtained by applying a combined activation- and CDC approach on abundantly available, renewable and cheap raw materials. For the synthesis of these materials we mimic nature by using wood structures as templates which are already optimized for mass transport during their long-term evolutional process. The impregnation of steam- or carbon dioxide-pre-activated wood templates with a polycarbosilane precursor and the subsequent halogen treatment yields a hierarchical material that exhibits longitudinally orientated macropores from the wood structure as well as well-defined and narrowly distributed micro- and meso-pores derived from the activation and CDC approach. These materials offer specific surface areas up to 1750 m2 g−1, micro-/meso-pore volumes up to 1.0 cm3 g−1 and macropore volumes of 1.2 cm3 g−1. This sophisticated hierarchical pore system ensures both efficient mass transfer and high specific surface area, ideal for mass transport limited applications, such as the lithium sulfur battery. Testing steam activated wood-CDCs as cathode materials for Li–S batteries reveals excellent performance, especially a highly stable discharge capacity and sulfur utilization. Stable capacities of over 580 mA h gsulfur−1 at current densities exceeding 20 mA cm−2 (2C) are possible using only very low amounts of electrolyte of 6.8 μL mgsulfur−1.

Graphical abstract: Trimodal hierarchical carbide-derived carbon monoliths from steam- and CO2-activated wood templates for high rate lithium sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2015
Accepted
19 Oct 2015
First published
26 Oct 2015
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2015,3, 24103-24111

Author version available

Trimodal hierarchical carbide-derived carbon monoliths from steam- and CO2-activated wood templates for high rate lithium sulfur batteries

M. Adam, P. Strubel, L. Borchardt, H. Althues, S. Dörfler and S. Kaskel, J. Mater. Chem. A, 2015, 3, 24103 DOI: 10.1039/C5TA06782K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements