Issue 40, 2015

Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction

Abstract

We synthesize and investigate AuPd alloys for the electrocatalytic reduction of CO2. Thin films of AuPd were synthesized using an electron-beam co-deposition method, which yields uniform, phase-pure metal alloys with composition control. Scanning electron microscope images show that the thin films are relatively uniform and flat in morphology. X-ray diffraction showed alloying and phase homogeneity within the AuPd thin films. Elemental mapping of Au and Pd with scanning transmission electron microscopy shows that AuPd thin films are uniform in composition on the nanometer scale. X-ray photoelectron spectroscopy characterization indicates that AuPd alloys are slightly Au-rich on the surface and follow a similar trend to the bulk composition as determined by Vegard's Law. CO2 reduction activity and selectivity were investigated across the AuPd system. All AuPd alloys were found to be more active and selective for formate production than either of the pure metals, indicating that Au and Pd can act synergistically to yield new electrocatalytic properties.

Graphical abstract: Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2015
Accepted
28 Aug 2015
First published
11 Sep 2015

J. Mater. Chem. A, 2015,3, 20185-20194

Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction

C. Hahn, D. N. Abram, H. A. Hansen, T. Hatsukade, A. Jackson, N. C. Johnson, T. R. Hellstern, K. P. Kuhl, E. R. Cave, J. T. Feaster and T. F. Jaramillo, J. Mater. Chem. A, 2015, 3, 20185 DOI: 10.1039/C5TA04863J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements