Jump to main content
Jump to site search

Issue 19, 2015
Previous Article Next Article

Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting

Author affiliations

Abstract

The formation and stability of Nin and (NiO)n (n = 1–4) clusters on the β-Ga2O3 surface have been studied by means of first-principles density functional theory calculations. It is found that the optimum interaction of the Nin and (NiO)n clusters with the surface requires different surface sites. This optimizes the formation of interfacial bonds between the atoms from clusters and the coordinatively unsaturated atoms from the surface. The stability of the adsorbed Ni clusters increases with the number of Ni atoms. In a Nin/Ga2O3 system, as the Ga unoccupied states overlap with the unoccupied Ni state, the excited electrons transferred from Ga to Ni participate in the proton reduction reaction. Our calculations show that (NiO)n clusters strongly adsorb on the Ga2O3 surface due to the negative adsorption energies within −1.9 eV to −3.7 eV. For (NiO)n/Ga2O3, occupied states from the (NiO)n cluster may accept the holes from O atoms in the Ga2O3 surface to take part in the photocatalytic water oxidation reaction.

Graphical abstract: Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Mar 2015, accepted on 10 Apr 2015 and first published on 10 Apr 2015


Article type: Paper
DOI: 10.1039/C5TA02193F
Author version
available:
Download author version (PDF)
Citation: J. Mater. Chem. A, 2015,3, 10309-10319
  •   Request permissions

    Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting

    T. Liu, I. Tranca, J. Yang, X. Zhou and C. Li, J. Mater. Chem. A, 2015, 3, 10309
    DOI: 10.1039/C5TA02193F

Search articles by author

Spotlight

Advertisements